Learn R Programming

lmomco (version 1.7.3)

quakmu: Quantile Function of the Kappa-Mu Distribution

Description

This function computes the quantiles of the Kappa-Mu ($\kappa:\mu$) distribution given parameters ($\kappa$ and $\alpha$) of the distribution computed by parkmu. The quantile function of the distribution is complex and numerical rooting of the cumulative distribution function is used. The quantile function is $$x(F,\eta,\mu) = \ldots$$ where $x(F)$ is the quantile for nonexceedance probability $F$.

Usage

quakmu(f, para, paracheck=TRUE, marcumQ=TRUE, ...)

Arguments

f
Nonexceedance probability ($0 \le F \le 1$).
para
The parameters from parkmu or similar.
paracheck
A logical controlling whether the parameters and checked for validity.
marcumQ
A logical controlling whether the Marcum Q function is used for the cumulative distribution function instead of numerical integration of pdfkmu.
...
Additional arguments to pass to the other probability functions used for the rooting process.

Value

  • Quantile value for nonexceedance probability $F$.

References

Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68--81

See Also

cdfkmu, parkmu

Examples

Run this code
quakmu(0.75,vec2par(c(0.9, 1.5), type="kmu"))

Run the code above in your browser using DataLab