partexp
. The quantile function of the distribution iswhere $x(F)$ is the quantile for nonexceedance probability $F$, $\xi$ is a location parameter, $\alpha$ is a scale parameter, $0 \le x \le \xi$. The distribution has $0 < \tau_2 <= 1="" 2$,="" $\xi=""> 0$, and $1/\alpha \ne 0$.
quatexp(f, para, paracheck=TRUE)
partexp
or similar.pdftexp
, cdftexp
, partexp
lmr <- vec2lmom(c(40,0.38), lscale=FALSE)
quatexp(0.5,partexp(lmr))
F <- nonexceeds()
L1 <- 50; T2 <- seq(0.51,0.005,by=-.001)
PAR <- partexp(vec2lmom(c(L1,1/3), lscale=FALSE))
plot(F, quatexp(F, PAR),
type="l", lwd=2, col=2,
xlab="NONEXCEEDANCE PROBABILITY",
ylab="SIGHTING TIMES",
ylim=c(0,300)) # uniform distribution
for(t2 in T2) {
PAR <- partexp(vec2lmom(c(L1,t2), lscale=FALSE))
if(is.null(PAR)) next
if(PAR$is.uni) {
# For the T2 near 1/3 a kick over to uniform solution is
# needed. For the -0.001 steps shown above no uniform
# distribution solutions will be "used" and no output.
print(PAR$para) # by this print() will be seen.
}
lines(F, quatexp(F,PAR), col=rgb(0,0,0,.1))
}
# Because T2 started at > 1/2, ten warnings of LCV > 1/2
# will result during execution of the for() loop.
Run the code above in your browser using DataLab