para <- vec2par(c(40,20), type='nor')
theoLmoms.max.ostat(para=para, cdf=cdfnor, pdf=pdfnor)
# The Rice distribution is complex and tailoring of the integration
# limits is needed to effectively trapped errors, the limits for the
# Normal distribution above are infinite so no granular control is needed.
para <- vec2par(c(30,10), type="rice")
theoLmoms.max.ostat(para=para, cdf=cdfrice, pdf=pdfrice,
lower=0, upper=.Machine$double.max)
para <- vec2par(c(0.6, 1.5), type="emu")
theoLmoms.min.ostat(para, cdf=cdfemu, pdf=pdfemu,
lower=0, upper=.Machine$double.max)
theoLmoms.min.ostat(para, cdf=cdfemu, pdf=pdfemu, yacoubsintegral = FALSE,
lower=0, upper=.Machine$double.max)
para <- vec2par(c(0.6, 1.5), type="kmu")
theoLmoms.min.ostat(para, cdf=cdfkmu, pdf=pdfkmu,
lower=0, upper=.Machine$double.max)
theoLmoms.min.ostat(para, cdf=cdfkmu, pdf=pdfkmu, marcumQ = FALSE,
lower=0, upper=.Machine$double.max)
# The Normal distribution is used on the fly for the Rice for
# high signal to noise ratios (SNR=nu/alpha > some threshold). This
# application here will error out.
nu <- 30; alpha <- 0.5
para <- vec2par(c(nu,alpha), type="rice")
theoLmoms.max.ostat(para=para, cdf=cdfrice, pdf=pdfrice,
lower=0, upper=.Machine$double.max)
Run the code above in your browser using DataLab