Learn R Programming

lmomco (version 1.7.3)

tlmrglo: Compute Select TL-moment ratios of the Generalized Logistic Distribution

Description

This function computes select TL-moment ratios of the Generalized Logistic distribution for defaults of $\xi = 0$ and $\alpha = 1$. This function can be useful for plotting the trajectory of the distribution on TL-moment ratio diagrams of $\tau^{(t_1,t_2)}_2$, $\tau^{(t_1,t_2)}_3$, $\tau^{(t_1,t_2)}_4$, $\tau^{(t_1,t_2)}_5$, and $\tau^{(t_1,t_2)}_6$. In reality, $\tau^{(t_1,t_2)}_2$ is a dependent on the values for $\xi$ and $\alpha$.

If the message Error in integrate(XofF, 0, 1) : the integral is probably divergent occurs then careful adjustment of the shape parameter $\kappa$ parameter range is very likely required. Remember that TL-moments with nonzero trimming permit computation of TL-moments into parameter ranges beyond those recognized for the usual L-moments.

The function uses numerical integration of the quantile function of the distribution through the theoTLmoms function.

Usage

tlmrglo(trim=NULL, leftrim=NULL, rightrim=NULL,
        xi=0, alpha=1, kbeg=-.99, kend=0.99, by=.1)

Arguments

trim
Level of symmetrical trimming to use in the computations. Although NULL in the argument list, the default is 0---the usual L-moment ratios are returned.
leftrim
Level of trimming of the left-tail of the sample.
rightrim
Level of trimming of the right-tail of the sample.
xi
Location parameter of the distribution.
alpha
Scale parameter of the distribution.
kbeg
The beginning $\kappa$ value of the distribution.
kend
The ending $\kappa$ value of the distribution.
by
The increment for the seq() between kbeg and kend.

Value

  • An R list is returned.
  • tau2A vector of the $\tau^{(t_1,t_2)}_2$ values.
  • tau3A vector of the $\tau^{(t_1,t_2)}_3$ values.
  • tau4A vector of the $\tau^{(t_1,t_2)}_4$ values.
  • tau5A vector of the $\tau^{(t_1,t_2)}_5$ values.
  • tau6A vector of the $\tau^{(t_1,t_2)}_6$ values.

See Also

quaglo, theoTLmoms

Examples

Run this code
tlmrglo(leftrim=1, rightrim=3, xi=0, alpha=4)
#tlmrglo(leftrim=1, rightrim=3, xi=32, alpha=83) # another slow example

# Plot and L-moment ratio diagram of Tau3 and Tau4
  # with exclusive focus on the GLO distribution.
  plotlmrdia(lmrdia(), autolegend=TRUE, xleg=-.1, yleg=.6,
             xlim=c(-.8, .7), ylim=c(-.1, .8),
             nolimits=TRUE, nogev=TRUE, nogpa=TRUE, nope3=TRUE,
             nogno=TRUE, nocau=TRUE, noexp=TRUE, nonor=TRUE,
             nogum=TRUE, noray=TRUE, nouni=TRUE)

  # Compute the TL-moment ratios for trimming of one
  # value on the left and four on the right. Notice the
  # expansion of the kappa parameter space from
  # -1 < k < -1 to something larger based on manual
  # adjustments until blue curve encompassed the plot.
  J <- tlmrglo(kbeg=-2.5, kend=1.9, leftrim=1, rightrim=4)
  lines(J$tau3, J$tau4, lwd=2, col=2) # RED CURVE

  # Compute the TL-moment ratios for trimming of four
  # values on the left and one on the right.
  J <- tlmrglo(kbeg=-1.65, kend=3, leftrim=4, rightrim=1)
  lines(J$tau3, J$tau4, lwd=2, col=4) # BLUE CURVE

  # The kbeg and kend can be manually changed to see how
  # the resultant curve expands or contracts on the
  # extent of the L-moment ratio diagram.
# Following up, let us plot the two quantile functions
  LM  <- vec2par(c(0,1,0.99), type='glo', paracheck=FALSE)
  TLM <- vec2par(c(0,1,3.00), type='glo', paracheck=FALSE)
  F <- nonexceeds()
  plot(qnorm(F),  quaglo(F, LM), type="l")
  lines(qnorm(F), quaglo(F, TLM, paracheck=FALSE), col=2)
  # Notice how the TLM parameterization runs off towards
  # infinity much much earlier than the conventional
  # near limits of the GLO.

Run the code above in your browser using DataLab