# see the example for z.par2qua for more context
## define the real parent (or close)
the.gpa <- vec2par(c(100,1000,0.1),type='gpa')
fake.data <- rlmomco(30,the.gpa) # simulate some data
fake.data <- sort(c(fake.data,0,0,0,0)) # add of zero observations
# next compute the parameters for the positive data
gpa <- pargpa(lmoms(fake.data[fake.data > 0]))
n <- length(fake.data) # sample size
p <- length(fake.data[fake.data == 0])/n # est. prob of zero value
F <- nonexceeds() # handy values, to get nice range of x
x <- z.par2qua(F,p,gpa) # x are now computed
PP <- pp(fake.data) # compute plotting positions of sim. sample
plot(PP,fake.data,ylim=c(0,5000)) # plot the sample
lines(cdfgpa(x,the.gpa),x) # the parent (without zeros)
lines(z.par2cdf(x,p,gpa),x,lwd=3) # fitted model with zero conditional
# now repeat the above code over and over again and watch the results
Run the code above in your browser using DataLab