50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


lmomco (version 2.0.1)

lmomaep4: L-moments of the 4-p Asymmetric Exponential Power Distribution

Description

This function computes the L-moments of the 4-parameter Asymmetric Exponential Power distribution given the parameters ($\xi$, $\alpha$, $\kappa$, and $h$) from paraep4. The first four L-moments of the distribution are complex.

The mean $\lambda_1$ is

λ1=ξ+α(1/κκ)Γ(2/h)Γ(1/h)

where $\Gamma(x)$ is the complete gamma function or gamma() in R.

The L-scale $\lambda_2$ is

λ2=ακ(1/κκ)2Γ(2/h)(1+κ2)Γ(1/h)+2ακ2(1/κ3+κ3)Γ(2/h)I1/2(1/h,2/h)(1+κ2)2Γ(1/h)

where $I_{1/2}(1/h,2/h)$ is the cumulative distribution function of the beta distribution ($I_x(a,b)$) or pbeta(1/2, shape1=1/h, shape2=2/h) in R. This function is also referred to as the normalized incomplete beta function (Delicado and Goria, 2008) and defined as

Ix(a,b)=0xta1(1t)b1dtβ(a,b)

where $\beta(1/h, 2/h)$ is the complete beta function or beta(1/h, 2/h) in R.

The third L-moment $\lambda_3$ is

λ3=A1+A2+A3

where the $A_i$ are

A1=α(1/κκ)(κ44κ2+1)Γ(2/h)(1+κ2)2Γ(1/h)

A2=6ακ3(1/κκ)(1/κ3+κ3)Γ(2/h)I1/2(1/h,2/h)(1+κ2)3Γ(1/h)

A3=6α(1+κ4)(1/κκ)Γ(2/h)Δ(1+κ2)2Γ(1/h)

and where $\Delta$ is

Δ=1β(1/h,2/h)01/2t1/h1(1t)2/h1I(1t)/(2t)(1/h,3/h)dt

The fourth L-moment $\lambda_4$ is

λ4=B1+B2+B3+B4

where the $B_i$ are

B1=ακ(1/κκ)2(κ48κ2+1)Γ(2/h)(1+κ2)3Γ(1/h)

B2=12ακ2(κ3+1/κ3)(κ43κ2+1)Γ(2/h)I1/2(1/h,2/h)(1+κ2)4Γ(1/h)

B3=30ακ3(1/κκ)2(1/κ2+κ2)Γ(2/h)Δ(1+κ2)3Γ(1/h)

B4=20ακ4(1/κ5+κ5)Γ(2/h)Δ1(1+κ2)4Γ(1/h)

and where $\Delta_1$ is

Δ1=01/20(1y)/(2y)y1/h1(1y)2/h1z1/h1(1z)3/h1Idzdyβ(1/h,2/h)β(1/h,3/h)

for which $I' = I_{(1-z)(1-y)/(1+(1-z)(1-y))}(1/h, 2/h)$ is the cumulative distribution function of the beta distribution ($I_x(a,b)$) or pbeta((1-z)(1-y)/(1+(1-z)(1-y)), shape1=1/h, shape2=2/h) in R.

Usage

lmomaep4(para, paracheck=TRUE, t3t4only=FALSE)

Arguments

para
The parameters of the distribution.
paracheck
Should the parameters be checked for validity by the are.paraep4.valid function.
t3t4only
Return only the $\tau_3$ and $\tau_4$ for the parameters $\kappa$ and $h$. The $\lambda_1$ and $\lambda_2$ are not explicitly used although numerical values for these two L-moments are required only to avoid computational errors. Care is made so that the

Value

  • An Rlist is returned.
  • lambdasVector of the L-moments. First element is $\lambda_1$, second element is $\lambda_2$, and so on.
  • ratiosVector of the L-moment ratios. Second element is $\tau$, third element is $\tau_3$ and so on.
  • trimTrim level = 0
  • leftrimLeft trimming level = 0
  • rightrimRight trimming level = 0
  • sourceAn attribute identifying the computational source of the L-moments: lmomaep4.
  • or an alternative Rlist is returned if t3t4only=TRUE
  • T3L-skew, $\tau_3$
  • T4L-kurtosis, $\tau_4$

References

Delicado, P., and Goria, M.N., 2008, A small sample comparison of maximum likelihood, moments and L-moments methods for the asymmetric exponential power distribution: Computational Statistics and Data Analysis, v. 52, no. 3, pp. 1661-1673.

Asquith, W.H., 2014, Parameter Estimation for the 4-Parameter Asymmetric Exponential Power Distribution by the Method of L-moments using R: Computational Statistics and Data Analysis, v. 71, pp. 955-970.

See Also

paraep4, quaaep4, cdfaep4

Examples

Run this code
para <- vec2par(c(0, 1, 0.5, 4), type="aep4")
lmomaep4(para)

Run the code above in your browser using DataLab