Last chance! 50% off unlimited learning
Sale ends in
paraep4
. The first four L-moments of the distribution are complex.The mean $\lambda_1$ is
where $\Gamma(x)$ is the complete gamma function or gamma()
in R.
The L-scale $\lambda_2$ is
where $I_{1/2}(1/h,2/h)$ is the cumulative distribution function of the beta distribution ($I_x(a,b)$) or pbeta(1/2, shape1=1/h, shape2=2/h)
in R. This function is also referred to as the normalized incomplete beta function (Delicado and Goria, 2008) and defined as
where $\beta(1/h, 2/h)$ is the complete beta function or beta(1/h, 2/h)
in R.
The third L-moment $\lambda_3$ is
where the $A_i$ are
and where $\Delta$ is
The fourth L-moment $\lambda_4$ is
where the $B_i$ are
and where $\Delta_1$ is
for which $I' = I_{(1-z)(1-y)/(1+(1-z)(1-y))}(1/h, 2/h)$ is the cumulative distribution function of the beta distribution ($I_x(a,b)$) or pbeta((1-z)(1-y)/(1+(1-z)(1-y)), shape1=1/h, shape2=2/h)
in R.
lmomaep4(para, paracheck=TRUE, t3t4only=FALSE)
are.paraep4.valid
function.t3t4only=TRUE
Asquith, W.H., 2014, Parameter Estimation for the 4-Parameter Asymmetric Exponential Power Distribution by the Method of L-moments using R: Computational Statistics and Data Analysis, v. 71, pp. 955-970.
paraep4
, quaaep4
, cdfaep4
para <- vec2par(c(0, 1, 0.5, 4), type="aep4")
lmomaep4(para)
Run the code above in your browser using DataLab