set.seed(11)
x <- rnorm(35)
lmomsf01(x)$lambdas # linear approx via weibull
lmomsf01(sort(x), f=pp(x))$lambdas # same
lmomsf01(x, f=pp(x, sort=FALSE))$lambdas # same
pwm2lmom(pwm.pp(x, pp=pp(x, sort=FALSE)))$lambdas # directly by weibull
pwm2lmom(pwm.pp(x, B=1))$lambdas # same
lmoms(x)$lambdas # unbiased estimates
lmr0 <- lmoms(x)
lmr1 <- lmomsf01(sort(x), f=pp(x))
lmr2 <- pwm2lmom(pwm.pp(x, B=1))
Fs <- seq(0.001, 0.999, by=0.001)
F <- pp(x, sort=FALSE)
xofF <- approx(x=F, y=x, xout=Fs, rule=2)$y
plot(qnorm(Fs), xofF, type="l",
xlab="STANDARD NORMAL VARIATE",
ylab="VALUE")
points(qnorm(F), x)
lines(qnorm(Fs), qlmomco(Fs, parnor(lmr0)), col=2)
lines(qnorm(Fs), qlmomco(Fs, parnor(lmr1)))
lines(qnorm(Fs), qlmomco(Fs, parnor(lmr2)), col=3)
Run the code above in your browser using DataLab