partexp
. The parameter $\psi$ is the right truncation of the distribution, and $\alpha$ is a scale parameter. The probability density function, letting $\beta = 1/\alpha$ to match nomenclature of Vogel and others (2008), iswhere $x(x)$ is the probability density for the quantile $0 \le x \le \psi$ and $\psi > 0$ and $\alpha > 0$. This distribution represents a nonstationary Poisson process.
The distribution is restricted to a narrow range of L-CV ($\tau_2 = \lambda_2/\lambda_1$). If $\tau_2 = 1/3$, the process represented is a stationary Poisson for which the probability density function is simply the uniform distribution and $f(x) = 1/\psi$. If $\tau_2 = 1/2$, then the distribution is represented as the usual exponential distribution with a location parameter of zero and a rate parameter $\beta$. Both of these limiting conditions are supported.
pdftexp(x, para)
partexp
or similar.cdftexp
, quatexp
, partexp
lmr <- vec2lmom(c(40,0.38), lscale=FALSE)
pdftexp(0.5,partexp(lmr))
F <- seq(0,1,by=0.001)
A <- partexp(vec2lmom(c(100, 1/2), lscale=FALSE))
x <- quatexp(F, A)
plot(x, pdftexp(x, A), pch=16, type='l')
by <- 0.01; lcvs <- c(1/3, seq(1/3+by, 1/2-by, by=by), 1/2)
reds <- (lcvs - 1/3)/max(lcvs - 1/3)
for(lcv in lcvs) {
A <- partexp(vec2lmom(c(100, lcv), lscale=FALSE))
x <- quatexp(F, A)
lines(x, pdftexp(x, A),
pch=16, col=rgb(reds[lcvs == lcv],0,0))
}
Run the code above in your browser using DataLab