D <- data.frame(X1=rnorm(30), X2=rnorm(30), X3=rnorm(30))
L2 <- Lcomoment.matrix(D,k=2)
RHO <- Lcomoment.correlation(L2)
## Not run:
# "SerfXiao.eq17" <-
# function(n=25, A=10, B=2, k=4,
# method=c("pearson","lcorr"), wrt=c("12", "21")) {
# method <- match.arg(method); wrt <- match.arg(wrt)
# # X1 is a linear regression on X2
# X2 <- rnorm(n); X1 <- A + B*X2 + rnorm(n)
# r12p <- cor(X1,X2) # Pearson's product moment correlation
# XX <- data.frame(X1=X1, X2=X2) # for the L-comoments
# T2 <- Lcomoment.correlation(Lcomoment.matrix(XX, k=2))$matrix
# LAMk <- Lcomoment.matrix(XX, k=k)$matrix # L-comoments of order k
# if(wrt == "12") { # is X2 the sorted variable?
# lmr <- lmoms(X1, nmom=k); Lamk <- LAMk[1,2]; Lcor <- T2[1,2]
# } else { # no X1 is the sorted variable (21)
# lmr <- lmoms(X2, nmom=k); Lamk <- LAMk[2,1]; Lcor <- T2[2,1]
# }
# # Serfling and Xiao (2007, eq. 17) state that
# # L-comoment_k[12] = corr.coeff * Lmoment_k[1] or
# # L-comoment_k[21] = corr.coeff * Lmoment_k[2]
# # And with the X1, X2 setup above, Pearson corr. == L-corr.
# # There will be some numerical differences for any given sample.
# ifelse(method == "pearson",
# return(lmr$lambdas[k]*r12p - Lamk),
# return(lmr$lambdas[k]*Lcor - Lamk))
# # If the above returns a expected value near zero then, their eq.
# # is numerically shown to be correct and the estimators are unbiased.
# }
#
# # The means should be near zero.
# nrep <- 2000; seed <- rnorm(1); set.seed(seed)
# mean(replicate(n=nrep, SerfXiao.eq17(method="pearson", k=4)))
# set.seed(seed)
# mean(replicate(n=nrep, SerfXiao.eq17(method="lcorr", k=4)))
# # The variances should nearly be equal.
# seed <- rnorm(1); set.seed(seed)
# var(replicate(n=nrep, SerfXiao.eq17(method="pearson", k=6)))
# set.seed(seed)
# var(replicate(n=nrep, SerfXiao.eq17(method="lcorr", k=6)))
# ## End(Not run)
Run the code above in your browser using DataLab