## Not run:
# plotradarlmr(NULL, minrat=-0.6, maxrat=0.6, tag="2 GEVs") # create the plot base
# gev <- vec2par(c(1230,123,-.24), type="gev") # set first parent distribution
# poly <- list(col=NA, border=rgb(0,0,1,.1)) # set up polygon handling (blue)
# for(i in 1:100) { # perform 100 simulations of the GEV with a sample of size 36
# plotradarlmr(lmoms(rlmomco(36,gev), nmom=6), plot=FALSE,
# poly.control=poly, minrat=-0.6, maxrat=0.6)
# }
# poly <- list(col=NA, border=4, lwd=3) # set up parent polygon
# plotradarlmr(theoLmoms(gev, nmom=6), plot=FALSE,
# poly.control=poly, minrat=-0.6, maxrat=0.6) # draw the parent
# gev <- vec2par(c(450,1323,.5), type="gev") # set second parent distribution
# poly <- list(col=NA, border=rgb(0,1,0,.1)) # set up polygon handling (green)
# for(i in 1:100) { # perform 100 simulations of the GEV with a sample of size 36
# plotradarlmr(lmoms(rlmomco(36,gev), nmom=6), plot=FALSE,
# poly.control=poly, minrat=-0.6, maxrat=0.6) # draw the parent
# }
# poly <- list(col=NA, border=3, lwd=3) # set up parent polygon
# plotradarlmr(theoLmoms(gev, nmom=6), plot=FALSE,
# poly.control=poly, minrat=-0.6, maxrat=0.6)
# poly <- list(col=NA, border=6, lty=1, lwd=2) # make the zeros purple to standout.
# plotradarlmr(NULL, make.zero.axis=TRUE, plot=FALSE,
# poly.control=poly, minrat=-0.6, maxrat=0.6)
# ## End(Not run)
Run the code above in your browser using DataLab