## Not run:
# tlmrglo(leftrim=1, rightrim=3, xi=0, alpha=4)
# tlmrglo(leftrim=1, rightrim=3, xi=32, alpha=83) # another slow example
# ## End(Not run)
## Not run:
# # Plot and L-moment ratio diagram of Tau3 and Tau4
# # with exclusive focus on the GLO distribution.
# plotlmrdia(lmrdia(), autolegend=TRUE, xleg=-.1, yleg=.6,
# xlim=c(-.8, .7), ylim=c(-.1, .8),
# nolimits=TRUE, nogev=TRUE, nogpa=TRUE, nope3=TRUE,
# nogno=TRUE, nocau=TRUE, noexp=TRUE, nonor=TRUE,
# nogum=TRUE, noray=TRUE, nouni=TRUE)
#
# # Compute the TL-moment ratios for trimming of one
# # value on the left and four on the right. Notice the
# # expansion of the kappa parameter space from
# # -1 < k < -1 to something larger based on manual
# # adjustments until blue curve encompassed the plot.
# J <- tlmrglo(kbeg=-2.5, kend=1.9, leftrim=1, rightrim=4)
# lines(J$tau3, J$tau4, lwd=2, col=2) # RED CURVE
#
# # Compute the TL-moment ratios for trimming of four
# # values on the left and one on the right.
# J <- tlmrglo(kbeg=-1.65, kend=3, leftrim=4, rightrim=1)
# lines(J$tau3, J$tau4, lwd=2, col=4) # BLUE CURVE
#
# # The kbeg and kend can be manually changed to see how
# # the resultant curve expands or contracts on the
# # extent of the L-moment ratio diagram.
# ## End(Not run)
## Not run:
# # Following up, let us plot the two quantile functions
# LM <- vec2par(c(0,1,0.99), type='glo', paracheck=FALSE)
# TLM <- vec2par(c(0,1,3.00), type='glo', paracheck=FALSE)
# F <- nonexceeds()
# plot(qnorm(F), quaglo(F, LM), type="l")
# lines(qnorm(F), quaglo(F, TLM, paracheck=FALSE), col=2)
# # Notice how the TLM parameterization runs off towards
# # infinity much much earlier than the conventional
# # near limits of the GLO.
# ## End(Not run)
Run the code above in your browser using DataLab