## Not run:
# tlmrgpa(leftrim=7, rightrim=2, xi=0, alpha=31)
# tlmrgpa(leftrim=7, rightrim=2, xi=143, alpha=98) # another slow example
# ## End(Not run)
## Not run:
# # Plot and L-moment ratio diagram of Tau3 and Tau4
# # with exclusive focus on the GPA distribution.
# plotlmrdia(lmrdia(), autolegend=TRUE, xleg=-.1, yleg=.6,
# xlim=c(-.8, .7), ylim=c(-.1, .8),
# nolimits=TRUE, nogev=TRUE, noglo=TRUE, nope3=TRUE,
# nogno=TRUE, nocau=TRUE, noexp=TRUE, nonor=TRUE,
# nogum=TRUE, noray=TRUE, nouni=TRUE)
#
# # Compute the TL-moment ratios for trimming of one
# # value on the left and four on the right. Notice the
# # expansion of the kappa parameter space from k > -1.
# J <- tlmrgpa(kbeg=-3.2, kend=50, by=.05, leftrim=1, rightrim=4)
# lines(J$tau3, J$tau4, lwd=2, col=2) # RED CURVE
# # Notice the gap in the curve near tau3 = 0.1
#
# # Compute the TL-moment ratios for trimming of four
# # values on the left and one on the right.
# J <- tlmrgpa(kbeg=-1.6, kend=8, leftrim=4, rightrim=1)
# lines(J$tau3, J$tau4, lwd=2, col=3) # GREEN CURVE
#
# # The kbeg and kend can be manually changed to see how
# # the resultant curve expands or contracts on the
# # extent of the L-moment ratio diagram.
# ## End(Not run)
## Not run:
# # Following up, let us plot the two quantile functions
# LM <- vec2par(c(0,1,0.99), type='gpa', paracheck=FALSE)
# TLM <- vec2par(c(0,1,3.00), type='gpa', paracheck=FALSE)
# F <- nonexceeds()
# plot(qnorm(F), quagpa(F, LM), type="l")
# lines(qnorm(F), quagpa(F, TLM, paracheck=FALSE), col=2)
# # Notice how the TLM parameterization runs off towards
# # infinity much much earlier than the conventional
# # near limits of the GPA.
# ## End(Not run)
Run the code above in your browser using DataLab