## Not run:
# set.seed(62)
# Fs <- nonexceeds()
# type <- "exp"; parent <- vec2par(c(0,13.4), type=type)
# X <- rlmomco(100, parent); a <- 0; PP <- pp(X, a=a); Xs <- sort(X)
# par <- lmom2par(lmoms(X), type=type)
# plot(PP, Xs, type="n", xlim=c(0,1), ylim=c(.1,100), log="y",
# xlab="NONEXCEEDANCE PROBABILITY", ylab="RANDOM VARIATE")
# points(PP, Xs, col=3, cex=2, pch=0, lwd=2)
# X[X < 2.1] <- X[X < 2.1]/2 # create some low outliers
# Xlo <- x2xlo(X, leftout=2.1, a=a)
# parlo <- lmom2par(lmoms(Xlo$xin), type=type)
# points(Xlo$ppout, Xlo$xout, pch=4, col=1)
# points(Xlo$ppin, Xlo$xin, col=4, cex=.7)
# lines(Fs, qlmomco(Fs, parent), lty=2, lwd=2)
# lines(Fs, qlmomco(Fs, par), col=2, lwd=4)
# lines(sort(c(Xlo$ppin,.999)),
# qlmomco(f2flo(sort(c(Xlo$ppin,.999)), pp=Xlo$pp), parlo), col=4, lwd=3)
# # Notice how in the last line plotted that the proper plotting positions of the data
# # greater than the threshold are passed into the f2flo() function that has the effect
# # of mapping conventional nonexceedance probabilities into the conditional probability
# # space. These mapped probabilities are then passed into the quantile function.
# legend(.3,1, c("Simulated random variates",
# "Values to 'leave' (condition) out because x/2 (low outliers)",
# "Values to 'leave' in", "Exponential parent",
# "Exponential fitted to whole data set",
# "Exponential fitted to left-in values"), bty="n", cex=.75,
# pch =c(0,4,1,NA,NA,NA), col=c(3,1,4,1,2,4), pt.lwd=c(2,1,1,1),
# pt.cex=c(2,1,0.7,1), lwd=c(0,0,0,2,2,3), lty=c(0,0,0,2,1,1))
# ## End(Not run)
Run the code above in your browser using DataLab