Last chance! 50% off unlimited learning
Sale ends in
Is the distribution parameter object consistent with the corresponding distribution? The distribution functions (pdfkmu
, cdfkmu
, quakmu
, and lmomkmu
) require consistent parameters to return the cumulative probability (nonexceedance), density, quantile, and L-moments of the distribution, respectively. These functions internally use the are.parkmu.valid
function. The documentation for pdfkmu
provides the conditions for valid parameters.
are.parkmu.valid(para, nowarn=FALSE)
A logical switch on warning suppression. If TRUE
then options(warn=-1)
is made and restored on return. This switch is to permit calls in which warnings are not desired as the user knows how to handle the returned value---say in an optimization algorithm.
If the parameters are kmu
consistent.
If the parameters are not kmu
consistent.
# NOT RUN {
para <- vec2par(c(0.5, 1.5), type="kmu")
if(are.parkmu.valid(para)) Q <- quakmu(0.5,para)
# }
Run the code above in your browser using DataLab