# NOT RUN {
nsim <- 1000; n <- 10 # Let us compute variance of lambda_3
VL3sample <- mean(replicate(nsim, { zz <- lmoms.cov(rexp(n),nmom=3); zz[3,3] }))
falling.factorial <- function(a, b) gamma(b+1)*choose(a,b)
VL3exact <- ((4*n^2 - 3*n - 2)/30)/falling.factorial (10, 3) # Exact variance is from
print(c(VL3sample, VL3exact)) # Elamir and Seheult (2004, table 1, line 8)
#[1] 0.01755058 0.01703704 # the values obviously are consistent
# }
# NOT RUN {
# Data considered by Elamir and Seheult (2004, p. 348)
library(MASS); data(michelson); Light <- michelson$Speed
lmoms(Light, nmom=4)$lambdas # 852.4, 44.3, 0.83, 6.5 # matches those authors
lmoms.cov(Light) # [1, ] ==> 62.4267, 0.7116, 2.5912, -3.9847 # again matches
# The authors report standard error of L-kurtosis as 0.03695, which matches
lmoms.cov(Light, se="lmrse")[4] # 0.03695004
# }
# NOT RUN {
D <- rnorm(100) # Check results of Lmoments package.
lmoms.cov(D, rmax=5)[,5]
# lam1 lam2 lam3 lam4 lam5
#3.662721e-04 3.118812e-05 5.769509e-05 6.574662e-05 1.603578e-04
Lmoments::Lmomcov(D, rmax=5)[,5]
# L1 L2 L3 L4 L5
#3.662721e-04 3.118812e-05 5.769509e-05 6.574662e-05 1.603578e-04
# }
Run the code above in your browser using DataLab