50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

lmomco (version 2.3.1)

pdfst3: Probability Density Function of the 3-Parameter Student t Distribution

Description

This function computes the probability density of the 3-parameter Student t distribution given parameters (ξ, α, ν) computed by parst3. The probability density function is f(x)=Γ(12+12ν)αν1/2Γ(12)Γ(12ν)(1+t2/ν)(ν+1)/2, where f(x) is the probability density for quantile x, ξ is a location parameter, α is a scale parameter, and ν is a shape parameter in terms of the degrees of freedom as for the more familiar Student t distribution in R.

For value X, the built-in R functions can be used. For ν1000, one can use dnorm(X, mean=U, sd=A) and for U = ξ and A=α for 1.000001ν1000, one can use dt((X-U)/A, N)/A for N=ν. The R function dnorm is used for the Normal distribution and the R function dt is used for the 1-parameter Student t distribution.

Usage

pdfst3(x, para, paracheck=TRUE)

Arguments

x

A real value vector.

para

The parameters from parst3 or vec2par.

paracheck

A logical on whether the parameter should be check for validity.

Value

Probability density (f) for x.

References

Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978--146350841--8.

See Also

cdfst3, quast3, lmomst3, parst3

Examples

Run this code
# NOT RUN {
xs <- -200:200
   para <- vec2par(c(37,25,114), type="st3")
plot(xs, pdfst3(xs, para), type="l")
   para <- vec2par(c(11,36,1000), type="st3")
lines(xs, pdfst3(xs, para), lty=2)
   para <- vec2par(c(-7,60,40), type="st3")
lines(xs, pdfst3(xs, para), lty=3)
# }

Run the code above in your browser using DataLab