Learn Data & AI Skills | 50% off
Get 50% off unlimited learning

lmomco (version 2.3.6)

lmomgld: L-moments of the Generalized Lambda Distribution

Description

This function estimates the L-moments of the Generalized Lambda distribution given the parameters (ξ, α, κ, and h) from vec2par. The L-moments in terms of the parameters are complicated; however, there are analytical solutions. There are no simple expressions of the parameters in terms of the L-moments. The first L-moment or the mean is λ1=ξ+α(1κ+11h+1).

The second L-moment or L-scale in terms of the parameters and the mean is λ2=ξ+2α(κ+2)2α(1h+11h+2)ξ.

The third L-moment in terms of the parameters, the mean, and L-scale is \boldmath Y=2ξ+6α(κ+3)3(α+ξ)+ξ, and λ3=\boldmath Y+6α(2h+21h+31h+1).

The fourth L-moment in termes of the parameters and the first three L-moments is \boldmath Y=3h+4(2h+21h+31h+1), \boldmath Z=20ξ4+20α(κ+4)20\boldmath Yα, and λ4=\boldmath Z5(κ+3(α+ξ)ξ)+6(α+ξ)ξ.

It is conventional to express L-moments in terms of only the parameters and not the other L-moments. Lengthy algebra and further manipulation yields such a system of equations. The L-moments are λ1=ξ+α(1κ+11h+1), λ2=α(κ(κ+2)(κ+1)+h(h+2)(h+1)), λ3=α(κ(κ1)(κ+3)(κ+2)(κ+1)h(h1)(h+3)(h+2)(h+1)), and λ4=α(κ(κ2)(κ1)(κ+4)(κ+3)(κ+2)(κ+1)+h(h2)(h1)(h+4)(h+3)(h+2)(h+1)).

The L-moment ratios are τ3=κ(κ1)(h+3)(h+2)(h+1)h(h1)(κ+3)(κ+2)(κ+1)(κ+3)(h+3)×[κ(h+2)(h+1)+h(κ+2)(κ+1)], and τ4=κ(κ2)(κ1)(h+4)(h+3)(h+2)(h+1)+h(h2)(h1)(κ+4)(κ+3)(κ+2)(κ+1)(κ+4)(h+4)(κ+3)(h+3)×[κ(h+2)(h+1)+h(κ+2)(κ+1)].

The pattern being established through symmetry, even higher L-moment ratios are readily obtained. Note the alternating substraction and addition of the two terms in the numerator of the L-moment ratios (τr). For odd r3 substraction is seen and for even r3 addition is seen. For example, the fifth L-moment ratio is N1=κ(κ3)(κ2)(κ1)(h+5)(h+4)(h+3)(h+2)(h+1), N2=h(h3)(h2)(h1)(κ+5)(κ+4)(κ+3)(κ+2)(κ+1), D1=(κ+5)(h+5)(κ+4)(h+4)(κ+3)(h+3), D2=[κ(h+2)(h+1)+h(κ+2)(κ+1)], and τ5=N1N2D1×D2.

By inspection the τr equations are not applicable for negative integer values k={1,2,3,4,} and h={1,2,3,4,} as division by zero will result. There are additional, but difficult to formulate, restrictions on the parameters both to define a valid Generalized Lambda distribution as well as valid L-moments. Verification of the parameters is conducted through are.pargld.valid, and verification of the L-moment validity is conducted through are.lmom.valid.

Usage

lmomgld(para)

Arguments

para

The parameters of the distribution.

Value

An R list is returned.

lambdas

Vector of the L-moments. First element is λ1, second element is λ2, and so on.

ratios

Vector of the L-moment ratios. Second element is τ, third element is τ3 and so on.

trim

Level of symmetrical trimming used in the computation, which is 0.

leftrim

Level of left-tail trimming used in the computation, which is NULL.

rightrim

Level of right-tail trimming used in the computation, which is NULL.

source

An attribute identifying the computational source of the L-moments: “lmomgld”.

References

Asquith, W.H., 2007, L-moments and TL-moments of the generalized lambda distribution: Computational Statistics and Data Analysis, v. 51, no. 9, pp. 4484--4496.

Karvanen, J., Eriksson, J., and Koivunen, V., 2002, Adaptive score functions for maximum likelihood ICA: Journal of VLSI Signal Processing, v. 32, pp. 82--92.

Karian, Z.A., and Dudewicz, E.J., 2000, Fitting statistical distibutions---The generalized lambda distribution and generalized bootstrap methods: CRC Press, Boca Raton, FL, 438 p.

See Also

pargld, cdfgld, pdfgld, quagld

Examples

Run this code
# NOT RUN {
lmomgld(vec2par(c(10,10,0.4,1.3),type='gld'))
# }
# NOT RUN {
# }
# NOT RUN {
PARgld <- vec2par(c(0,1,1,.5), type="gld")
theoTLmoms(PARgld, nmom=6)
lmomgld(PARgld)
# }

Run the code above in your browser using DataLab