This function computes a specified quantile by nonexceedance probability \(F\) for the \(j\)th-order statistic of a sample of size \(n\) for a given distribution. Let the quantile function (inverse distribution) of the Beta distribution be
$$ \mathrm{B}^{(-1)}(F,j,n-j+1) \mbox{,} $$
and let \(x(F,\Theta)\) represent the quantile function of the given distribution and \(\Theta\) represents a vector of distribution parameters. The quantile function of the distribution of the \(j\)th-order statistic is
$$ x\bigl(\mathrm{B}^{(-1)}(F,j,n-j+1),\Theta\bigr) \mbox{.} $$
qua.ostat(f, j, n, para=NULL)
The quantile of the distribution of the \(j\)th-order statistic is returned.
The nonexceedance probability \(F\) for the quantile.
The \(j\)th-order statistic \(x_{1:n} \le x_{2:n} \le \ldots \le x_{j:n} \le x_{n:n}.\)
The sample size.
A distribution parameter list from a function such as lmom2par
or vec2par
.
W.H. Asquith
Gilchrist, W.G., 2000, Statistical modelling with quantile functions: Chapman and Hall/CRC, Boca Raton, Fla.
lmom2par
, vec2par