Learn R Programming

lmomco (version 2.5.3)

qua.ostat: Compute the Quantiles of the Distribution of an Order Statistic

Description

This function computes a specified quantile by nonexceedance probability \(F\) for the \(j\)th-order statistic of a sample of size \(n\) for a given distribution. Let the quantile function (inverse distribution) of the Beta distribution be

$$ \mathrm{B}^{(-1)}(F,j,n-j+1) \mbox{,} $$

and let \(x(F,\Theta)\) represent the quantile function of the given distribution and \(\Theta\) represents a vector of distribution parameters. The quantile function of the distribution of the \(j\)th-order statistic is

$$ x\bigl(\mathrm{B}^{(-1)}(F,j,n-j+1),\Theta\bigr) \mbox{.} $$

Usage

qua.ostat(f, j, n, para=NULL)

Value

The quantile of the distribution of the \(j\)th-order statistic is returned.

Arguments

f

The nonexceedance probability \(F\) for the quantile.

j

The \(j\)th-order statistic \(x_{1:n} \le x_{2:n} \le \ldots \le x_{j:n} \le x_{n:n}.\)

n

The sample size.

para

A distribution parameter list from a function such as lmom2par or vec2par.

Author

W.H. Asquith

References

Gilchrist, W.G., 2000, Statistical modelling with quantile functions: Chapman and Hall/CRC, Boca Raton, Fla.

See Also

lmom2par, vec2par