This function computes the quantiles of the Kappa-Mu (\(\kappa:\mu\)) distribution given parameters (\(\kappa\) and \(\alpha\)) computed by parkmu. The quantile function is complex and numerical rooting of the cumulative distribution function (cdfkmu) is used.
quakmu(f, para, paracheck=TRUE, getmed=FALSE, qualo=NA, quahi=NA, verbose=FALSE,
marcumQ=TRUE, marcumQmethod=c("chisq", "delta", "integral"))Quantile value for nonexceedance probability \(F\).
Nonexceedance probability (\(0 \le F \le 1\)).
The parameters from parkmu or vec2par.
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming.
Same argument for cdfkmu. Because of nesting a quakmu call in cdfkmu, this argument and the next two are shown here are to avoid confusion in use of ... instead. This argument should not overrided by the user.
A lower limit of the range of \(x\) to look for a uniroot of \(F(x)\).
An upper limit of the range of \(x\) to look for a uniroot of \(F(x)\).
Should alert messages be shown by message()?
Same argument for cdfkmu, which the user can set change.
Same argument for cdfkmu, which the user can set change.
W.H. Asquith
Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68--81
cdfkmu, pdfkmu, lmomkmu, parkmu
quakmu(0.75,vec2par(c(0.9, 1.5), type="kmu"))
Run the code above in your browser using DataLab