Learn R Programming

lmridge (version 1.2)

rplots.plot: Miscellaneous Ridge Plots

Description

Panel of three ridge related plots, df trace vs \(K\), RSS vs \(K\) and PRESS vs \(K\) for graphical judgement of optimal value of \(K\).

Usage

rplots.plot(x, abline = TRUE, …)

Arguments

x

An object of class "lmridge"

abline

Vertical line to show minimum value of ridge PRESS at cartain value of biasing parameter \(K\) on PRESS vs \(K\) plot.

Not presently used in this implementation.

Value

nothing

Details

Function rplots.plot can be used to plot the values of df vs \(K\), RSS vs \(K\) and PRESS vs \(K\) for scalar or vector values of biasing parameter \(K\). If no argument is used then a vertical line will be drawn on ridge PRESS plot to show the minimum value of PRESS at certain \(K\). The panel of these three plots can be helful in selecting the optimal value of biasing parameter \(K\).

References

Allen, D. M. (1971). Mean Square Error of Prediction as a Criterion for Selecting Variables. Technometrics, 13, 469-475. Allen, 1971.

Allen, D. M. (1974). The Relationship between Variable Selection and Data Augmentation and Method for Prediction. Technometrics, 16, 125-127. Allen, 1974.

Berk, R. (2008). Statistical Learning from a Regression Perspective. Springer.

Hoerl, A. E., Kennard, R. W., and Baldwin, K. F. (1975). Ridge Regression: Some Simulation. Communication in Statistics, 4, 105-123. Hoer et al., 1975.

Hoerl, A. E. and Kennard, R. W., (1970). Ridge Regression: Biased Estimation of Nonorthogonal Problems. Technometrics, 12, 55-67. Hoerl and Kennard, 1970.

Imdad, M. U. Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan), 2017.

See Also

The ridge model fitting lmridge, ridge CV and GCV plots cv.plot, variance bias trade-off plot bias.plot, m-scale and isrm plots isrm.plot, ridge AIC and BIC plots info.plot, ridge and VIF trace plot.lmridge

Examples

Run this code
# NOT RUN {
mod <- lmridge(y~., as.data.frame(Hald), K = seq(0, 0.2, 0.005))
rplots.plot(mod)
rplots.plot(mod, abline = FALSE)
# }

Run the code above in your browser using DataLab