lmtp_control: Set LMTP Estimation Parameters
Description
Set LMTP Estimation Parameters
Usage
lmtp_control(
.bound = 1e+05,
.trim = 0.999,
.learners_outcome_folds = 10,
.learners_trt_folds = 10,
.return_full_fits = FALSE
)
Value
A list of parameters controlling the estimation procedure.
Arguments
- .bound
[numeric(1)
]
Determines that maximum and minimum values (scaled) predictions
will be bounded by. The default is 1e-5, bounding predictions by 1e-5 and 0.9999.
- .trim
[numeric(1)
]
Determines the amount the density ratios should be trimmed.
The default is 0.999, trimming the density ratios greater than the 0.999 percentile
to the 0.999 percentile. A value of 1 indicates no trimming.
- .learners_outcome_folds
[integer(1)
]
The number of cross-validation folds for learners_outcome
.
- .learners_trt_folds
[integer(1)
]
The number of cross-validation folds for learners_trt
.
- .return_full_fits
[logical(1)
]
Return full SuperLearner fits? Default is FALSE
, return only SuperLearner weights.