These are values depending on the kernel and the local polynomial degrees that are used in bandwidth selection, as proposed in Fan and Gijbels(1996).
cteNuK(nu,p,kernel,lower=dom(kernel)[[1]],upper=dom(kernel)[[2]],
subdivisions= 25)
adjNuK(nu,p,kernel,lower=dom(kernel)[[1]],upper=dom(kernel)[[2]],
subdivisions= 25)
Both functions returns numeric values.
Order of derivative to estimate.
Degree of Local polynomial estimator.
Kernel used to perform the estimation, see Kernels
Integration limits.
the maximum number of subintervals.
Jorge Luis Ojeda Cabrera.
cteNuK
is computed using Compute kernel values and link{equivKernel}
jointly with the numerical integration utility
integrate
. adjNuK
is implemented using quotients
of previous functions. See Fan and Gijbels(1996) pages 67 and 119.
Fan, J. and Gijbels, I. Local polynomial modelling and its applications\/. Chapman & Hall, London (1996).
Wand, M.~P. and Jones, M.~C. Kernel smoothing\/. Chapman and Hall Ltd., London (1995).
regCVBwSelC
, pluginBw
, integrate
.