logConDens
,
activeSetLogCon
, or activeSetLogCon.mode
,
this function gives a function $\widehat I$ given by $$\widehat I(l,r) = \int_{l}^{r} \widehat{F}(u) d u$$
or by
$$\widehat I(l,r) = \int_{l}^{r} (1-\widehat{F}(u)) d u$$
Note that $l$ and $r$ must lie in $[x_1,x_m]$. For exact formulas
related to these integrals, see the intF
function.
intFfn(x, phi, Fhat, prec = 1e-10, side = "left")
preProcess
, potentially with a constrainx
that gives the log-concave
estimate's values at x
.x
that gives the log-concave
estimate CDF's values at x
.intF
function.side
is "left" then the return is of type
function(upper, lower=rep(x[1],length(upper))). If side
is "right" then the return is of type
function(lower, upper=rep(x[length(x)],length(lower))). Note
that the order of the arguments are changed, so that passing an
unnamed numeric value or vector has a default behavior of integrating
"from the outside-in".Duembgen, L. and Rufibach, K. (2009) Maximum likelihood estimation of a log-concave density and its distribution function: basic properties and uniform consistency. Bernoulli, 15(1), 40--68.
Duembgen, L. and Rufibach, K. (2011) logcondens: Computations
Related to Univariate Log-Concave Density Estimation.
Journal of Statistical Software, 39(6),
1--28.
Doss, C. R. (2013). Shape-Constrained Inference for Concave-Transformed Densities and their Modes. PhD thesis, Department of Statistics, University of Washington, in preparation.
Doss, C. R. and Wellner, J. A. (2013). Inference for the mode of a log-concave density. Technical Report, University of Washington, in preparation.
activeSetLogCon
or
activeSetLogCon.mode
. The function intECDFfn
is similar, but based on the empirical distribution function. The
function intF
behaves similarly but returns a vector
instead of a function.## estimate gamma density
set.seed(1977)
x <- rgamma(200, 2, 1)
res <- activeSetLogCon.mode(x, mode=1)
## res$x is not equal to x
myIntF <- intFfn( res$x, res$phi, res$Fhat, side="left")
s <- seq(min(res$x), max(res$x), by = 10 ^ -3)
D1 <- myIntF(s)
Run the code above in your browser using DataLab