Learn R Programming

logcondens (version 2.0.6)

quadDeriv: Gradient and Diagonal of Hesse Matrix of Quadratic Approximation to Log-Likelihood Function L

Description

Computes gradient and diagonal of the Hesse matrix w.r.t. to $\eta$ of a quadratic approximation to the reparametrized original log-likelihood function $$L(\phi) = \sum_{i=1}^m w_i \phi(x_i) - \int_{-\infty}^{\infty} \exp(\phi(t)) dt.$$ where $L$ is parametrized via $${\bold{\eta}}({\bold{\phi}}) = \Bigl(\phi_1, \Bigl(\eta_1+ \sum_{j=2}^i (x_i-x_{i-1})\eta_i\Bigr)_{i=2}^m\Bigr).$$ ${\bold{\phi}}$: vector $(\phi(x_i))_{i=1}^m$ representing concave, piecewise linear function $\phi$, ${\bold{\eta}}$: vector representing successive slopes of $\phi.$

Usage

quadDeriv(dx, w, eta)

Arguments

dx
Vector $(0, x_i-x_{i-1})_{i=2}^m.$
w
Vector of weights as in activeSetLogCon.
eta
Vector ${\bold{\eta}}.$

Value

  • $m \times 2$ matrix. First column contains gradient and second column diagonal of Hesse matrix.

See Also

quadDeriv is used by the function icmaLogCon.