Free Access Week-  Data Engineering + BI
Data engineering and BI courses are free!
Free AI Access Week from June 2-8

logcondens (version 2.1.8)

intF: Computes the Integral of the estimated CDF at Arbitrary Real Numbers in s

Description

Based on an object of class dlc as output by the function logConDens, this function gives values of

I^(t)=x1tF^(r)dr

at all numbers in \bolds. Note that t (so all elements in \bolds) must lie in [x1,xm]. The exact formula for I^(t) is

I^(t)=(i=1i0I^i(xi+1))+I^i0(t)

where i0=min{m1, {i : xit}} and

Ij(x)=xjxF^(r)dr=(xxj)F^(xj)+Δxj+1(Δxj+1Δϕ^j+1J(ϕ^j,ϕ^j+1,xxjΔxj+1)f^(xj)(xxj)Δϕ^j+1)

for x[xj,xj+1], j=1,,m1, Δvi+1=vi+1vi for any vector \boldv and the function J introduced in Jfunctions.

Usage

intF(s, res)

Value

Vector of the same length as \bolds, containing the values of I^ at the elements of \bolds.

Arguments

s

Vector of real numbers where the functions should be evaluated at.

res

An object of class "dlc", usually a result of a call to logConDens.

References

Duembgen, L. and Rufibach, K. (2009) Maximum likelihood estimation of a log--concave density and its distribution function: basic properties and uniform consistency. Bernoulli, 15(1), 40--68.

Duembgen, L. and Rufibach, K. (2011) logcondens: Computations Related to Univariate Log-Concave Density Estimation. Journal of Statistical Software, 39(6), 1--28. tools:::Rd_expr_doi("https://doi.org/10.18637/jss.v039.i06")

Rufibach K. (2006) Log-concave Density Estimation and Bump Hunting for i.i.d. Observations. PhD Thesis, University of Bern, Switzerland and Georg-August University of Goettingen, Germany, 2006.
Available at https://slsp-ube.primo.exlibrisgroup.com/permalink/41SLSP_UBE/17e6d97/alma99116730175505511.

See Also

This function uses the output of activeSetLogCon. The function intECDF is similar, but based on the empirical distribution function.

Examples

Run this code
## estimate gamma density
set.seed(1977)
x <- rgamma(200, 2, 1)
res <- logConDens(x, smoothed = FALSE, print = FALSE)

## compute and plot the process D(t) in Duembgen and Rufibach (2009)
s <- seq(min(res$x), max(res$x), by = 10 ^ -3)
D1 <- intF(s, res)
D2 <- intECDF(s, res$xn)
par(mfrow = c(2, 1))
plot(res$x, res$phi, type = 'l'); rug(res$x)
plot(s, D1 - D2, type = 'l'); abline(h = 0, lty = 2)

Run the code above in your browser using DataLab