a named matrix of estimates including parameter estimates, standard errors, z-scores, and p-values.
n.iter
an integer giving the number of iteration used
d
the actual max absolute difference of the parameters of the last two iterations, d=max(|par.final-par_old|).
loglike
loglikelihood evaluated at the parameter estimates.
AIC
Akaike Information Criterion.
BIC
Bayesian Information Criterion.
converged
logical indicating whether the current procedure converged or not.
Arguments
x, y
x is a data frame or data matrix containing the predictor variables and y is the vector of outcomes. The number of rows in x must be the same as the length of y.
initial
a vector of starting values for the parameters in the linear predictor; if not specified, the default initials are 0 for all parameters.
max.iter
a positive integer giving the maximal number of iterations; if it is reached, the algorithm will stop.
epsilon
a positive convergence tolerance epsilon; the iterations converge when max(|par-par_old|)<epsilon.
detail
logical indicating if output should be printed for each iteration.