a named matrix of estimates including parameter estimates, standard errors, z-scores, and p-values.
n.iter
an integer giving the number of iteration used
d
the actual max absolute difference of the parameters of the last two iterations.
loglike
loglikelihood evaluated at the parameter estimates.
AIC
Akaike Information Criterion.
BIC
Bayesian Information Criterion.
converged
logical indicating whether the current procedure converged or not.
Arguments
x, y
x is a data frame or data matrix containing the predictor variables and y is the vector of outcomes. The number of rows in x must be the same as the length of y.
initial
starting values for the parameters in the model(FP,FN misclassification parameters and those in the linear predictor);
if not specified, the default initials are 0 for the misclassification parameters and
estimates obtained from the logistic regression for the parameters in the linear predictor.
max.iter
a positive integer giving the maximal number of iterations; if it is reached, the algorithm will stop.
epsilon
a positive convergence tolerance epsilon.
detail
logical indicating if output should be printed for each iteration.