This function estimates a static lognormal - generalized Pareto mixture
by means of the EM algorithm. Optionally, bootstrap standard errors are
computed via parallel computing.
Usage
EMlogngpdmix(x0, y, maxiter, nboot = 0)
Value
A list with the following elements is returned:
"p" = estimated value of p,
"post" = posterior probabilities of all observations,
"mu" = estimated value of \(\mu\),
"sigma " = estimated value of \(\sigma\),
"xi" = estimated value of \(\xi\),
"beta" = estimated value of \(\beta\),
"loglik" = maximimzed log-likelihood,
"nit" = number of iterations,
bootEst = matrix of parameter estimates at each bootstrap replications (only if nboot > 0).
bootStd = bootstrap standard errors of each parameter (only if nboot > 0).
Arguments
x0
numerical vector (5x1): initial values of the parameters p,
\(\mu\), \(\sigma\), \(\xi\), \(\beta\).
y
vector: observed data.
maxiter
positive integer: maximum number of iterations of the EM algorithm.
nboot
positive integer: number of bootstrap replications for the
computation of the standard errors (defaults to 0).