Usage
lasso.cv(y, x=NULL, lambda1=NULL, model='linear', steps=15, minsteps=5, log=TRUE, track=FALSE, standardize= FALSE, unpenalized=~0, nFold=10, nMaxiter = Inf, ...)
Arguments
y
A vector of gene expression of a probe, or a list object if x is NULL. In the latter case y should a list of two components y and x, y is a vector of expression and x is a matrix containing copy number variables
x
Either a matrix containing CN variables or NULL
lambda1
minimum lambda to use
model
which model to use, one of "cox", "logistic", "linear",
or "poisson". Default to 'linear'
steps
parameter to be passed to penalized
minsteps
parameter to be passed to penalized
log
parameter to be passed to penalized
track
parameter to be passed to penalized
standardize
parameter to be passed to penalized
unpenalized
parameter to be passed to penalized
nFold
parameter to be passed to penalized
nMaxiter
parameter to be passed to penalized
...
other parameter to be passed to penalized