Learn R Programming

lol (version 1.20.0)

plotGW: Plot genome-wide data along the genome

Description

Plot different measurements across the genome such as copy number amplifications and deletions.

Usage

plotGW(data, pos, marks=NULL, fileType='png', file='plotGW', width=1000, height=500, autoscale=FALSE, col=c('lightblue', 'lightgreen', 'darkblue', 'darkgreen'), legend=1:10, ylab='', pch=19, cex.axis=1.2 ,cex.lab=1.2, cex=.5, legend.pos='bottomright', mtext=NULL, mtext.side=2, mtext.at=NULL, mtext.line=3, ...)

Arguments

data
data matrix to plot, each column is plotted individually across the genome
pos
the chromosome locations for the data, can be a matrix or data frame with a column named chromosome_name, or a numeric vector
marks
if there is specific marks to plot on the baselne, eg. to indicate where are the SNPs, should be a vector of numbers indicating where the marks is relative to the input data matrix
fileType
either png or pdf file type
file
file name
width
width of the plot
height
height of the plot
autoscale
should the columns of data be scaled?
col
colors for each of the data columns to be plotted, should be no shorter than the number of columns in 'data'
legend
legend text in the legend box
ylab
parameter for par, default to ''
pch
parameter for par, default to 19
cex.axis
parameter for par, default to 1.2
cex.lab
parameter for par, default to 1.2
cex
parameter for par, default to 0.5
legend.pos
parameter for legend, default to 'bottomright'
mtext
parameter for mtext, default to NULL
mtext.side
parameter for mtext, default to 2
mtext.at
parameter for mtext, default to 2
mtext.line
parameter for mtext, default to 3
...
Other parameters to pass to plot() or legend()

Value

Write an image file to disk, either in png or pdf format.

Details

This function requires as input data a vector or a matrix with different variables in columns, and a position matrix of chromosome name and start position. The number of rows in the position matrix should be the same as the length of the data vector or the number of rows of the data matrix. The function plots the data according to the position across the genome, providing a genome-wide description.

See Also

lasso.cv

Examples

Run this code
data(chin07)
gain <- rowSums(chin07$cn >= .2)
loss <- -rowSums(chin07$cn <= -.2)
plotGW(data=cbind(gain, loss), pos=attr(chin07$cn, 'chrome'), legend=c('gain', 'loss'))

Run the code above in your browser using DataLab