specARIMA: Spectral Density of Fractional ARMA Process
Description
Calculate the spectral density of a fractional ARMA process
with standard normal innovations and self-similarity parameter H.
Usage
specARIMA(eta, p, q, m)
Value
an object of class "spec" (see also spectrum)
with components
freq
the Fourier frequencies (in \((0,\pi)\)) at which the
spectrum is computed, see freq in specFGN.
spec
the scaled values spectral density \(f(\lambda)\)
values at the freq values of \(\lambda\).
\(f^*(\lambda) = f(\lambda) / \theta_1\)
adjusted such \(\int \log(f^*(\lambda)) d\lambda = 0\).
theta1
the scale factor \(\theta_1\).
pq
a vector of length two, = c(p,q).
eta
a named vector c(H=H, phi=phi, psi=psi) from input.
method
a character indicating the kind of model used.
Arguments
eta
parameter vector eta = c(H, phi, psi).
p, q
integers giving AR and MA order respectively.
m
sample size determining Fourier frequencies.
Author
Jan Beran (principal) and Martin Maechler (fine tuning)
Details
at the Fourier frequencies \(2*\pi*j/n\), (\(j=1,\dots,(n-1)\)),
cov(X(t),X(t+k)) = (sigma/(2*pi))*integral(exp(iuk)g(u)du).