Qeta()
(\(= \tilde{Q}(\eta)\) of Beran(1994), p.117)
is up to scaling the negative log likelihood function of the specified
model, i.e., fractional Gaussian noise or fractional ARIMA.
Qeta(eta, model = c("fGn","fARIMA"), n, yper, pq.ARIMA, give.B.only = FALSE)
a list with components
= input
(input) Hurst parameter, = eta[1]
.
= input
defined as above.
the goodness of fit test statistic \(Tn= A/B^2\) defined in Beran (1992)
the standardized test statistic
the corresponding p-value P(W > z)
the scale parameter $$\hat{\theta_1} = \frac{{\hat\sigma_\epsilon}^2}{2\pi}$$ such that \(f()= \theta_1 f_1()\) and \(integral(\log[f_1(.)]) = 0\).
scaled spectral density \(f_1\) at the Fourier frequencies
\(\omega_j\), see FEXPest
; a numeric vector.
parameter vector = (H, phi[1:p], psi[1:q]).
character specifying the kind model class.
data length
numeric vector of length (n-1)%/% 2
, the
periodogram of the (scaled) data, see per
.
integer, = c(p,q) specifying models orders of AR and
MA parts --- only used when model = "fARIMA"
.
logical, indicating if only the B
component
(of the Values
list below) should be returned. Is set to
TRUE
for the Whittle estimator minimization.
Jan Beran (principal) and Martin Maechler (fine tuning)
Calculation of \(A, B\) and \(T_n = A/B^2\) where \(A = 2\pi/n \sum_j 2*[I(\lambda_j)/f(\lambda_j)]\), \(B = 2\pi/n \sum_j 2*[I(\lambda_j)/f(\lambda_j)]^2\) and the sum is taken over all Fourier frequencies \(\lambda_j = 2\pi*j/n\), (\(j=1,\dots,(n-1)/2\)).
\(f\) is the spectral density of fractional Gaussian noise or
fractional ARIMA(p,d,q) with self-similarity parameter \(H\) (and
\(p\) AR and \(q\) MA parameters in the latter case), and is
computed either by specFGN
or specARIMA
.
$$cov(X(t),X(t+k)) = \int \exp(iuk) f(u) du$$
Jan Beran (1992). A Goodness-of-Fit Test for Time Series with Long Range Dependence. JRSS B 54, 749--760.
Beran, Jan (1994). Statistics for Long-Memory Processes; Chapman & Hall. (Section 6.1, p.116--119; 12.1.3, p.223 ff)
WhittleEst
computes an approximate MLE for fractional
Gaussian noise / fractional ARIMA, by minimizing Qeta
.
data(NileMin)
y <- NileMin
n <- length(y)
yper <- per(scale(y))[2:(1+ (n-1) %/% 2)]
eta <- c(H = 0.3)
q.res <- Qeta(eta, n=n, yper=yper)
str(q.res)
Run the code above in your browser using DataLab