data(NileMin)
(f.Gn.N <- WhittleEst(NileMin)) # H = 0.837
(f.A00.N <- WhittleEst(NileMin, model = "fARIMA", p=0, q=0)) # H = 0.899
confint(f.Gn.N)
confint(f.A00.N)
data(videoVBR)
(f.GN <- WhittleEst(videoVBR))
## similar {but faster !}:
(f.am00 <- WhittleEst(videoVBR, model = "fARIMA", p=0, q=0))
rbind(f.am00$coef,
f.GN $coef)# really similar
f.am11 <- WhittleEst(videoVBR, model = "fARIMA",
start= list(H= .5, AR = .5, MA= .5))
f.am11
vcov(f.am11)
op <- if(require("sfsmisc"))
mult.fig(3, main = "Whittle Estimators for videoVBR data")$old.par else
par(mar = c(3,1), mgp = c(1.5, 0.6, 0), mar = c(4,4,2,1)+.1)
plot(f.GN)
plot(f.am00)
plot(f.am11)
et <- as.list(coef(f.am11))
et$AR <- c(et$AR, 0, 0) # two more AR coefficients ..
f.am31 <- WhittleEst(videoVBR, model = "fARIMA", start = et)
## ... warning non nonconvergence, but "kind of okay":
lines(f.am31, col = "red3") ## drawing on top of ARMA(1,1) above - *small* diff
f.am31 # not all three are "significant"
round(cov2cor(vcov(f.am31)), 3) # and they are highly correlated
et <- as.list(coef(f.am31))
et$AR <- unname(unlist(et[c("AR1", "AR2")]))
f.am21 <- WhittleEst(videoVBR, model = "fARIMA",
start = c(et[c("H","AR", "MA")]))
f.am21
lines(f.am21, col = adjustcolor("gold", .4), lwd=4)
par(op)## (reset graphic layout)
##--> ?plot.WhittleEst for an example using 'periodogr.x'
Run the code above in your browser using DataLab