Calculate the spectral density of a fractional ARMA process with standard normal innovations and self-similarity parameter H.
specARIMA(eta, p, q, m)
an object of class "spec"
(see also spectrum
)
with components
the Fourier frequencies (in freq
in specFGN
.
the scaled values spectral density freq
values of
the scale factor
a vector of length two, = c(p,q)
.
a named vector c(H=H, phi=phi, psi=psi)
from input.
a character indicating the kind of model used.
parameter vector eta = c(H, phi, psi)
.
integers giving AR and MA order respectively.
sample size determining Fourier frequencies.
Jan Beran (principal) and Martin Maechler (fine tuning)
at the Fourier frequencies
--- or rather -- FIXME --
1. cov(X(t),X(t+k)) = integral[ exp(iuk)f(u)du ]
2. f() = theta1 * f*() ; spec = f*(), and integral[log(f*())] = 0
Beran (1994) and more, see ....
str(r.7 <- specARIMA(0.7, m = 256, p = 0, q = 0))
str(r.5 <- specARIMA(eta = c(H = 0.5, phi=c(-.06, 0.42, -0.36), psi=0.776),
m = 256, p = 3, q = 1))
plot(r.7)
plot(r.5)
Run the code above in your browser using DataLab