# NOT RUN {
# Use rstanarm package to quickly fit a model and get both a log-likelihood
# matrix and draws from the posterior predictive distribution
library("rstanarm")
# data from help("lm")
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
d <- data.frame(
weight = c(ctl, trt),
group = gl(2, 10, 20, labels = c("Ctl","Trt"))
)
fit <- stan_glm(weight ~ group, data = d)
yrep <- posterior_predict(fit)
dim(yrep)
ll <- log_lik(fit)
lw <- psislw(-ll, cores = 2)$lw_smooth
dim(lw)
E_loo(yrep, lw, type = "mean")
E_loo(yrep, lw, type = "var")
E_loo(yrep, lw, type = "quantile", probs = 0.5) # median
E_loo(yrep, lw, type = "quantile", probs = c(0.1, 0.9))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab