Learn R Programming

lordif (version 0.1-1)

lordif: performs Logistic Regression Differential Item Functioning using IRT

Description

Performs iterative hybrid ordinal logistic regression/IRT DIF.

Usage

lordif(resp.data, group, selection=NULL,  
  criterion="Chisqr", pseudo.R2="McFadden",  
  alpha=0.01, beta.change=0.1, R2.change=0.035,  
  maxIter=10, minCell=5, minTheta=-4.0, maxTheta=4.0, inc=0.1)

Arguments

resp.data
a data frame or matrix containing item responses
group
a vector of group designations
selection
a vector specifying a subset of items to be analyzed or NULL for all items
criterion
criterion for flagging (i.e., "CHISQR", "R2", or "BETA")
pseudo.R2
pseudo R-squared measure (i.e., "McFadden", "Nagelkerke", or "CoxSnell")
alpha
significance level for Chi-squared criterion
beta.change
proportional change for Beta criterion
R2.change
R-squared change for pseudo R-squared criterion
maxIter
maximum number of iterations for purification
minCell
minimum cell frequncy
minTheta
minimum for theta grid
maxTheta
maximum for theta grid
inc
increment for theta grid

Value

  • optionsOptions used for the run
  • selectionall or a subset of items analyzed
  • statsa matrix containing output statistics
  • flaga logical vector of final flags indicating whether each item is displaying DIF or not
  • recodeda data frame containing recoded item responses
  • groupa vector of group designation values
  • nga scalar for the number of groups
  • ncata vector of the number of response categories after collapsing/recoding
  • caliba vector of theta estimates based on the overall (non-group-specific) item parameters
  • calib.sparsea vector of theta estimates based on the group-specific item parameters (for DIF items)
  • iterationa scalar for the number of iterations
  • ipara data frame of the overall (non-group-specific) item parameter estimates
  • ipar.sparsea data frame of the group-specific item parameter estimates
  • stats.rawa matrix containing output statistics (the same components as stats above but based on raw scores)
  • meanrawa vector containing mean raw scores
  • flag.rawa logical vector of DIF final flags based on raw scores

Details

Performs a ordinal (common odds-ratio) logistic regression DIF analysis using IRT theta estimates as the conditioning variable. The graded response (GR) model is used for IRT trait estimation. Flagged items are treated as separate items and group-specific item parameters are obtained. The procedure runs iteratively until the same set of items is flagged over two iterations.

References

Choi, S. W., Gibbons, L. E., and Crane, P. K. (April, 2009). Development of freeware for an iterative hybrid ordinal logistic regression/IRT DIF. Paper Presented at the National Council of Measurement in Education. San Diego, CA. Crane, P. K., Gibbons, L. E., Jolley, L., and van Belle, G. (2006). Differential item functioning analysis with ordinal logistic regression techniques: DIF detect and difwithpar. Medical Care, 44(11 Suppl 3), S115-S123.

See Also

rundif

Examples

Run this code
##data(Anxeity)
resp.data <- Anxiety[paste("R",1:29,sep="")]
age <- Anxiety$age
age.DIF <- lordif(resp.data,age)

Run the code above in your browser using DataLab