set.seed(27)
m <- matrix(round(rnorm(25),2), 5, 5)
m <- m + t(m)
diag(m) <- pmax(0, diag(m)) + 1
(m <- round(cov2cor(m), 2))
near.m <- lotriNearPD(m)
round(near.m, 2)
norm(m - near.m) # 1.102 / 1.08
round(lotriNearPD(m, only.values=TRUE), 9)
## A longer example, extended from Jens' original,
## showing the effects of some of the options:
pr <- matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826,
0.477, 1, 0.516, 0.233, 0.682, 0.75,
0.644, 0.516, 1, 0.599, 0.581, 0.742,
0.478, 0.233, 0.599, 1, 0.741, 0.8,
0.651, 0.682, 0.581, 0.741, 1, 0.798,
0.826, 0.75, 0.742, 0.8, 0.798, 1),
nrow = 6, ncol = 6)
nc <- lotriNearPD(pr)
Run the code above in your browser using DataLab