alte2(formula, k, d, aa, press = FALSE, data = NULL, na.action, ...)
formula
.vector
, format. See data
, the variables are taken from environment(formula)
, typically the environment from which the function is called.NA
values, then na.action
indicate what should happen to those NA
values.k
and d
are single numeric values then alte2
returns the Type (2) Adjusted Liu Estimated values, standard error values, t statistic values, p value, corresponding scalar MSE value and PRESS value.
If k
and d
are vector of set of numeric values then alte2
returns the matrix of scalar MSE values and if alte2
returns the matrix of PRESS values of Type (2) Adjusted Liu Estimator by representing k
and d
as column names and row names respectively.y ~ x - 1
or y ~ 0 + x
to remove the intercept.
In order to get the best results, optimal values for k
,d
and aa
should be selected.
The way of finding aa
can be determined from Rong,Jian-Ying (2010) Adjustive Liu Type Estimators in linear regression models in communication in statistics-simulation and computation, volume 39
Use matplot
so as to obtain the variation of scalar MSE values and PRESS values graphically. See matplot
## Portland cement data set is used.
data(pcd)
k<-0.1650
d<--0.1300
aa<-c(0.958451,1.021155,0.857821,1.040296)
alte2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd) # Model without the intercept is considered.
## To obtain the variation of MSE of Type (2) Adjusted Liu Estimator.
data(pcd)
k<-c(0:5/10)
d<-c(5:25/10)
aa<-c(0.958451,1.021155,0.857821,1.040296)
msemat<-alte2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd)
matplot(d,alte2(Y~X1+X2+X3+X4-1,k,d,aa,data=pcd),type="l",ylab=c("MSE"),
main=c("Plot of MSE of Type (2) Adjusted Liu Estimator"),
cex.lab=0.6,adj=1,cex.axis=0.6,cex.main=1,las=1,lty=3)
text(y=msemat[1,],x=d[1],labels=c(paste0("k=",k)),pos=4,cex=0.6)
## Use "press=TRUE" to obtain the variation of PRESS of Type (2) Adjusted Liu Estimator.
Run the code above in your browser using DataLab