Learn R Programming

⚠️There's a newer version (2.1.6) of this package.Take me there.

lsasim (version 2.1.4)

Functions to Facilitate the Simulation of Large Scale Assessment Data

Description

Provides functions to simulate data from large-scale educational assessments, including background questionnaire data and cognitive item responses that adhere to a multiple-matrix sampled design. The theoretical foundation can be found on Matta, T.H., Rutkowski, L., Rutkowski, D. et al. (2018) .

Copy Link

Version

Install

install.packages('lsasim')

Monthly Downloads

212

Version

2.1.4

License

GPL-3

Maintainer

Waldir Leoncio

Last Published

August 22nd, 2023

Functions in lsasim (2.1.4)

calc_replicate_weights

Calculate replicate weights and summary statistics
calc_se_rho

Calculate Standard Error of Intraclass Correlation
brr

Generate replicates of a dataset using Balanced Repeated Replication
block_design

Assignment of test items to blocks
cor_gen

Generation of random correlation matrix
cov_gen

Generation of covariance matrices
booklet_design

Assignment of item blocks to test booklets
calc_n_tilde

Calculate ñ
calc_var_within

Calculate variance within classes
calc_var_between

Calculate variance between classes
check_ignored_parameters

Checks if provided parameters are ignored
irt_gen

Simulate item responses from an item response model
calc_var_tot

Calculate the total variance
lambda_gen

Randomly generate a matrix of factor loadings
check_condition

Check if an error condition is satisfied
check_n_N_class

Check class of n or N
booklet_sample

Assignment of test booklets to test takers
lsasim

lsasim: A package for simulating large scale assessment data
cluster_message

Print messages about clusters
pisa2012_math_block

PISA 2012 mathematics item - item block indicator matrix
check_valid_structure

Check if List is Valid
anova.lsasimcluster

Generate an ANOVA table for LSASIM clusters
item_gen

Generation of item parameters from uniform distributions
pisa2012_math_booklet

PISA 2012 mathematics item block - test booklet indicator matrix
convert_vector_to_list

Convert Vector to Expanded List
cluster_gen

Generate cluster sample
ranges

Defines vector as range
cov_yxz_gen

Generate analytical covariance matrix
attribute_cluster_labels

Attribute Labels in Hierarchical Structure
customize_summary

Customize Summary
print_anova

Print the ANOVA table
cov_yfz_gen

Generate latent regression covariance matrix
proportion_gen

Generation of random cumulative proportions
gen_X_W_cluster

Generate n_X and n_W for clusters
pisa2012_math_item

Item parameter estimates for 2012 PISA mathematics assessment
questionnaire_gen_family

Generation of ordinal and continuous variables
recalc_final_weights

Recalculate final weights
cluster_gen_separate

Generate cluster samples with individual questionnaires
gen_cat_prop

Generates cat_prop for questionnaire_gen
summary_2

Dataset summary statistics
trim_sample

Trim sample
sample_within_range

Sample from range
cluster_gen_together

Generate cluster samples with lowest-level questionnaires
select

Transform regular vector into selection vector
pisa2012_q_cormat

Correlation matrix from the PISA 2012 background questionnaire
.onAttach

Prints welcome message on package load
validate_questionnaire_gen

Wrapper-functions for check_condition
questionnaire_gen_polychoric

Generation of ordinal and continuous variables
draw_cluster_structure

Draw Cluster Structure
cov_yxw_gen

Setup full YXW covariance matrix
weight_responses

Weight responses
gen_variable_n

Randomly generate the quantity of background variables
intraclass_cor

Intraclass correlation
jackknife

Generate replicates of a dataset using Jackknife
pt_bis_conversion

Analytical point-biserial conversion
label_respondents

Label respondents
pisa2012_q_marginal

Marginal proportions from the PISA 2012 background questionnaire
questionnaire_gen

Generation of ordinal and continuous variables
pluralize

Pluralize words
replicate_var

Sampling variance of the mean for replications
rzeropois

Generate data from a Zero-truncated Poisson
response_gen

Generation of item response data using a rotated block design
whitelist_message

Whitelist message
sample_from

Sample from population structure
split_cat_prop

Split variables in cat_prop
summary.lsasimcluster

Summarizes clusters
beta_gen

Generate regression coefficients