onepl is used to fit 1PL Rasch model.
onepl(
data,
niter = 15000,
nburn = 2500,
nthin = 5,
nprint = 500,
jump_beta = 0.4,
jump_theta = 1,
pr_mean_beta = 0,
pr_sd_beta = 1,
pr_mean_theta = 0,
pr_a_theta = 0.001,
pr_b_theta = 0.001
)
onepl
returns an object of list containing the following components:
posterior estimation of beta.
posterior estimation of theta.
posterior estimation of standard deviation of theta.
posterior samples of beta.
posterior samples of theta.
posterior samples of standard deviation of theta.
accept ratio of beta.
accept ratio of theta.
Matrix; binary item response matrix to be analyzed. Each row is assumed to be respondent and its column values are assumed to be response to the corresponding item.
Numeric; number of iterations to run MCMC sampling. default value is 15000.
Numeric; number of initial, pre-thinning, MCMC iterations to discard. default value is 2500.
Numeric;number of thinning, MCMC iterations to discard. default value is 5.
Numeric; MCMC samples is displayed during execution of MCMC chain for each nprint
. default value is 500.
Numeric; jumping rule of the proposal density for beta. default value is 0.4.
Numeric; jumping rule of the proposal density for theta. default value is 1.0.
Numeric; mean of normal prior for beta. default value is 0.
Numeric; standard deviation of normal prior for beta. default value is 1.0.
Numeric; mean of normal prior for theta. default value is 0.
Numeric; shape parameter of inverse gamma prior for variance of theta. default value is 0.001.
Numeric; scale parameter of inverse gamma prior for variance of theta. default value is 0.001.
onepl
models the probability of correct response by respondent \(j\) to item \(i\) with item effect \(\beta_i\), respondent effect \(\theta_j\): $$logit(P(Y_{j,i} = 1|\theta_j,\beta_i))=\theta_j+\beta_i$$
# \donttest{
# generate example item response matrix
data <- matrix(rbinom(500, size = 1, prob = 0.5),ncol=10,nrow=50)
result <- onepl(data)
# }
Run the code above in your browser using DataLab