Learn R Programming

⚠️There's a newer version (0.2.1.5) of this package.Take me there.

lsm()

Release:

Development:

Welcome to the lsm package!

When the values of the outcome variable Y are either 0 or 1, the function calculates the estimation of the log likelihood in the saturated model. This model is characterized by Llinas (2006, ISSN:2389-8976) in section 2.3 through the assumptions 1 and 2. If is dichotomous and the data are grouped in J populations, it is recommended to use the function because it works very well for all .

Details

The saturated model is characterized by the assumptions 1 and 2 presented in section 2.3 by Llinas (2006, ISSN:2389-8976).

Installation

library(devtools)
install_github("jlvia1191/lsm")

De forma alternativa

install.packages("devtools")
library(devtools)
devtools::install_github("jlvia1191/lsm")

Example Usage

Hosmer, D. (2013) page 3: Age and coranary Heart Disease (CHD) Status of 20 subjects:

library(lsm)

  AGE <- c(20,23,24,25,25,26,26,28,28,29,30,30,30,30,30,30,30,32,33,33)
  CHD <- c(0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0)
  
  data <- data.frame (CHD,  AGE )
  lsm(CHD ~ AGE , family=binomial, data)
  
  ## For more ease, use the following notation.
  
  lsm(y~., data)

Other case.

   y <- c(1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1)
  x1 <- c(2, 2, 2, 5, 5, 5, 5, 8, 8, 11, 11, 11)
 
  data <- data.frame (y, x1)
  ELAINYS <-lsm(y ~ x1, family=binomial, data)
  summary(ELAINYS)

Other case.


  y <- as.factor(c(1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1))
  x1 <- as.factor(c(2, 2, 2, 5, 5, 5, 5, 8, 8, 11, 11, 11))
 
  data <- data.frame (y, x1)
  ELAINYS1 <-lsm(y ~ x1, family=binomial, data)
  confint(ELAINYS1)

References

[1] Humberto Jesus Llinas. (2006). Accuracies in the theory of the logistic models. Revista Colombiana De Estadistica,29(2), 242-244.

[2] Hosmer, D. (2013). Wiley Series in Probability and Statistics Ser. : Applied Logistic Regression (3). New York: John Wiley & Sons, Incorporated.

[3] Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

Author(s)

Humberto Llinas Solano [aut], Universidad del Norte, Barranquilla-Colombia \ Omar Fabregas Cera [aut], Universidad del Norte, Barranquilla-Colombia \ Jorge Villalba Acevedo [cre, aut], Universidad Tecnológica de Bolívar, Cartagena-Colombia.

Copy Link

Version

Install

install.packages('lsm')

Monthly Downloads

300

Version

0.2.0

License

MIT + file LICENSE

Maintainer

Jorge Villalba

Last Published

March 7th, 2020

Functions in lsm (0.2.0)

lowbwt

The Low Birth Weight Study.
confint.lsm

Confidence Intervals for lsm Objects
pros

The Prostate Cancer Study
lsm

Estimation of the log Likelihood of the Saturated Model
chdage

Coronary Heart Disease Study
uis

uis
icu

The icu Study.
summary.lsm

Summarizing Method for lsm Objects