samp <- 5000 # samples from posterior distribution
burn <- 1000 # burn-in samples to discard
gamm <- c(0, 0)
delt <- rep(0, 5)
post <- postsamp(fmodelrsm, c(0,1,2,1,0), cpar = gamm, dpar = delt,
control = list(nbatch = samp + burn))
post <- data.frame(sample = 1:samp,
zeta = post$batch[(burn + 1):(samp + burn)])
with(post, plot(sample, zeta), type = "l") # trace plot of sampled realizations
with(post, plot(density(zeta, adjust = 2))) # density estimate of posterior distribution
with(posttrace(fmodelrsm, c(0,1,2,1,0), cpar = gamm, dpar = delt),
plot(zeta, post, type = "l")) # profile of log-posterior density
information(fmodelrsm, c(0,1,2,1,0), cpar = gamm, dpar = delt) # Fisher information
with(post, mean(zeta)) # posterior mean
postmode(fmodelrsm, c(0,1,2,1,0), cpar = gamm, dpar = delt) # posterior mode
with(post, quantile(zeta, probs = c(0.025, 0.975))) # posterior credibility interval
profileci(fmodelrsm, c(0,1,2,1,0),
cpar = gamm, dpar = delt) # profile likelihood confidence interval
Run the code above in your browser using DataLab