Learn R Programming

⚠️There's a newer version (1.4.6.1) of this package.Take me there.

ltsa (version 1.4.2)

Linear time series analysis

Description

Methods of developing linear time series modelling. Methods are given for loglikelihood computation, forecasting and simulation.

Copy Link

Version

Install

install.packages('ltsa')

Monthly Downloads

1,653

Version

1.4.2

License

GPL (>= 2)

Maintainer

A.I. McLeod

Last Published

September 22nd, 2012

Functions in ltsa (1.4.2)

TrenchMean

Exact MLE for mean given the autocorrelation function
TrenchForecast

Minimum Mean Square Forecast
DLSimulate

Simulate linear time series
TrenchInverse

compute the matrix inverse of a positive-definite Toepliz matrix
PredictionVariance

Prediction variance
tacvfARMA

theoretical autocovariance function (acvf) of ARMA
TrenchLoglikelihood

Loglikelihood function of stationary time series using Trench algorithm
DLAcfToAR

Autocorrelations to AR parameters
DHSimulate

Simulate General Linear Process
ToeplitzInverseUpdate

Inverse of Toeplitz matrix of order n+1 given inverse of order n
is.toeplitz

test if argument is a symmetric Toeplitz matrix
DLLoglikelihood

Durbin-Levinsion Loglikelihood
ltsa-package

Linear time series analysis
DLResiduals

Prediction residuals
SimGLP

Simulate GLP given innovations
exactLoglikelihood

Exact log-likelihood and MLE for variance
innovationVariance

Nonparametric estimate of the innovation variance