Learn R Programming

⚠️There's a newer version (1.4.6.1) of this package.Take me there.

ltsa (version 1.4.6)

Linear Time Series Analysis

Description

Methods of developing linear time series modelling. Methods are given for loglikelihood computation, forecasting and simulation.

Copy Link

Version

Install

install.packages('ltsa')

Monthly Downloads

1,413

Version

1.4.6

License

GPL (>= 2)

Maintainer

A.I. McLeod

Last Published

December 21st, 2015

Functions in ltsa (1.4.6)

DLAcfToAR

Autocorrelations to AR parameters
DLResiduals

Prediction residuals
TrenchInverse

compute the matrix inverse of a positive-definite Toepliz matrix
TrenchMean

Exact MLE for mean given the autocorrelation function
PredictionVariance

Prediction variance
innovationVariance

Nonparametric estimate of the innovation variance
DLLoglikelihood

Durbin-Levinsion Loglikelihood
TrenchLoglikelihood

Loglikelihood function of stationary time series using Trench algorithm
SimGLP

Simulate GLP given innovations
ToeplitzInverseUpdate

Inverse of Toeplitz matrix of order n+1 given inverse of order n
TrenchForecast

Minimum Mean Square Forecast
is.toeplitz

test if argument is a symmetric Toeplitz matrix
tacvfARMA

theoretical autocovariance function (acvf) of ARMA
DHSimulate

Simulate General Linear Process
exactLoglikelihood

Exact log-likelihood and MLE for variance
ltsa-package

Linear Time Series Analysis
DLSimulate

Simulate linear time series