Learn R Programming

m2r (version 1.0.3)

ideal: Create a new ideal in Macaulay2

Description

Create a new ideal in Macaulay2

Usage

ideal(..., raw_chars = FALSE, code = FALSE)

ideal.(..., raw_chars = FALSE, code = FALSE)

ideal_(x, raw_chars = FALSE, code = FALSE, ...)

ideal_.(x, raw_chars = FALSE, code = FALSE, ...)

# S3 method for m2_ideal m2_parse_function(x)

# S3 method for m2_monomialideal m2_parse_function(x)

# S3 method for m2_ideal print(x, ...)

# S3 method for m2_ideal_list print(x, ...)

radical(ideal, ring, code = FALSE, ...)

radical.(ideal, ring, code = FALSE, ...)

saturate(I, J, code = FALSE, ...)

saturate.(I, J, code = FALSE, ...)

quotient(I, J, code = FALSE, ...)

quotient.(I, J, code = FALSE, ...)

primary_decomposition(ideal, code = FALSE, ...)

primary_decomposition.(ideal, code = FALSE, ...)

dimension(ideal, code = FALSE, ...)

# S3 method for m2_ideal +(e1, e2)

# S3 method for m2_ideal *(e1, e2)

# S3 method for m2_ideal ==(e1, e2)

# S3 method for m2_ideal ^(e1, e2)

Value

a reference to a Macaulay2 ideal

Arguments

...

...

raw_chars

if TRUE, the character vector will not be parsed by mpoly::mp(), saving time (default: FALSE). the down-side is that the strings must be formated for M2 use directly, as opposed to for mpoly::mp(). (e.g. "x*y+3" instead of "x y + 3")

code

return only the M2 code? (default: FALSE)

x

a listing of polynomials. several formats are accepted, see examples.

ideal

an ideal object of class m2_ideal or m2_ideal_pointer

ring

the referent ring in Macaulay2

I, J

ideals or objects parsable into ideals

e1, e2

ideals for arithmetic