Create a new ideal in Macaulay2
ideal(..., raw_chars = FALSE, code = FALSE)ideal.(..., raw_chars = FALSE, code = FALSE)
ideal_(x, raw_chars = FALSE, code = FALSE, ...)
ideal_.(x, raw_chars = FALSE, code = FALSE, ...)
# S3 method for m2_ideal
m2_parse_function(x)
# S3 method for m2_monomialideal
m2_parse_function(x)
# S3 method for m2_ideal
print(x, ...)
# S3 method for m2_ideal_list
print(x, ...)
radical(ideal, ring, code = FALSE, ...)
radical.(ideal, ring, code = FALSE, ...)
saturate(I, J, code = FALSE, ...)
saturate.(I, J, code = FALSE, ...)
quotient(I, J, code = FALSE, ...)
quotient.(I, J, code = FALSE, ...)
primary_decomposition(ideal, code = FALSE, ...)
primary_decomposition.(ideal, code = FALSE, ...)
dimension(ideal, code = FALSE, ...)
# S3 method for m2_ideal
+(e1, e2)
# S3 method for m2_ideal
*(e1, e2)
# S3 method for m2_ideal
==(e1, e2)
# S3 method for m2_ideal
^(e1, e2)
a reference to a Macaulay2 ideal
...
if TRUE
, the character vector will not be parsed by
mpoly::mp()
, saving time (default: FALSE
). the down-side is that
the strings must be formated for M2 use directly, as opposed to for
mpoly::mp()
. (e.g. "x*y+3"
instead of "x y + 3"
)
return only the M2 code? (default: FALSE
)
a listing of polynomials. several formats are accepted, see examples.
an ideal object of class m2_ideal
or
m2_ideal_pointer
the referent ring in Macaulay2
ideals or objects parsable into ideals
ideals for arithmetic