Learn R Programming

mAPKL (version 1.4.2)

preprocess: Performs normalization and/or log2 transformation

Description

This function performs normalization and/or log2 transformation on gene expression data.

Usage

preprocess(exprsObj,log2=TRUE, norm="ALL", destname=NULL)

Arguments

exprsObj
An eSet object where its assay data will be normalized
log2
Performs logarithmic transformation of base 2 prior to any normalzation. The default value is TRUE
norm
The user may define a specific normalization method rather than "ALL" which is the default case. The available abbreviations are described in the details section
destname
Here we define the destination path and the name of the jpeg file with the density plots. The default path is the working directory

Value

  • rawdataThe initial gene expression values
  • mc.normdataThe values after 'mean-centering' normalization
  • z.normdataThe values after 'z-score' normalization
  • q.normdataThe values after 'quantile' normalization
  • cl.normdataThe values after 'cyclic loess' normalization
  • mcL2.normdataThe values after 'mean-centering' normalization and log2
  • zL2.normdataThe values after 'z-score' normalization and log2
  • qL2.normdataThe values after 'quantile' normalization and log2
  • clL2.normdataThe values after 'cyclic loess' normalization and log2

Details

The available normalization methods are: Mean-centering normalization "mc" z-score normalization "z" Quantile normalization "q" Cyclic loess normalization "cl" Mean-centering normalization and log2 transformation "mcL2" z-score normalization and log2 transformation "zL2" Quantile normalization and log2 transformation "qL2" Cyclic loess normalization and log2 transformation "clL2"

Examples

Run this code
library(mAPKLData)
data(mAPKLData)
varLabels(mAPKLData)
breast <- sampling(Data=mAPKLData, valPercent=40, classLabels="type", seed=135)
normTrainData <- preprocess(exprsObj=breast$trainData)

Run the code above in your browser using DataLab