Learn R Programming

mBvs (version 1.92)

mBvs-package: Bayesian Variable Selection Methods for Multivariate Data

Description

Bayesian variable selection methods for data with multivariate responses and multiple covariates. The package contains implementations of multivariate Bayesian variable selection methods for continuous data and zero-inflated count data.

Arguments

Author

Kyu Ha Lee, Mahlet G. Tadesse, Brent A. Coull, Jacqueline R. Starr
Maintainer: Kyu Ha Lee <klee15239@gmail.com>

Details

The package includes the following function:

mvnBvsBayesian variable selection for data with multivariate continuous responses
mzipBvsBayesian variable selection for conditional multivariate zero-inflated Poisson models
mmzipBvsBayesian variable selection for marginalized multivariate zero-inflated Poisson models

Package:mBvs
Type:Package
Version:1.92
Date:2024-4-13
License:GPL (>= 2)
LazyLoad:yes

References

Lee, K. H., Tadesse, M. G., Baccarelli, A. A., Schwartz J., and Coull, B. A. (2017), Multivariate Bayesian variable selection exploiting dependence structure among outcomes: application to air pollution effects on DNA methylation, Biometrics, Volume 73, Issue 1, pages 232-241.

Lee, K. H., Coull, B. A., Moscicki, A.-B., Paster, B. J., Starr, J. R. (2020), Bayesian variable selection for multivariate zero-inflated models: application to microbiome count data, Biostatistics, Volume 21, Issue 3, Pages 499-517