# Load Species*Traits dataframe:
data('fruits_traits', package = 'mFD')
# Load Traits types dataframe:
data('fruits_traits_cat', package = 'mFD')
# Compute functional distance
sp_dist_fruits <- mFD::funct.dist(sp_tr = fruits_traits,
tr_cat = fruits_traits_cat,
metric = "gower",
scale_euclid = "scale_center",
ordinal_var = "classic",
weight_type = "equal",
stop_if_NA = TRUE)
# Compute beta functional hill indices:
baskets_beta <- beta.fd.hill(
asb_sp_w = baskets_fruits_weights,
sp_dist = sp_dist_fruits,
q = c(0,1,2),
tau = 'mean',
beta_type = 'Jaccard',
check_input = TRUE,
details_returned = TRUE)
# Then use the mFD::dist.to.df function to ease visualizing result:
## for q = 0:
mFD::dist.to.df(list_dist = list(FDq2 = baskets_beta$beta_fd_q$q0))
## for q = 1:
mFD::dist.to.df(list_dist = list(FDq2 = baskets_beta$beta_fd_q$q1))
## for q = 2:
mFD::dist.to.df(list_dist = list(FDq2 = baskets_beta$beta_fd_q$q2))
Run the code above in your browser using DataLab