solutions

0th

Percentile

Basic result of the mRMR procedure

The 'solutions' method allows one to access the set of selected features resulting of the mRMR algorithm. More generally, the set of feature are identified by their indices in the inputed feature set (1 being the first feature (column)). At the network level, 'solutions' consists of the topology of the network, identifying which features is connected to others.

Keywords
methods
Usage
"solutions"(object, mi_threshold, causality_threshold) "solutions"(object)
Arguments
object
a mRMRe.Filter or mRMRe.Network object.
mi_threshold
a numeric value used in filtering the features based on their mRMR scores, features that do not pass the threshold will be set at NA.
causality_threshold
a numeric value used in filtering the features based on their causality scores, features that do not pass the threshold will be set at NA

Aliases
  • solutions
  • solutions,mRMRe.Filter-method
  • solutions,mRMRe.Network-method
Examples
set.thread.count(2)
data(cgps)
feature_data <- mRMR.data(data =  data.frame(cgps.ge))

# Create an mRMR filter and obtain the indices of selected features
filter <- mRMR.classic("mRMRe.Filter", data = feature_data, target_indices = 3:5,
						feature_count = 2)
solutions(filter)

# Build an mRMR-based network and obtain feature connections (topology)
network <- new("mRMRe.Network", data = feature_data, target_indices = c(1, 2),
			levels = c(2, 1), layers = 1)
solutions(network)
Documentation reproduced from package mRMRe, version 2.0.5, License: Artistic-2.0

Community examples

Looks like there are no examples yet.