Learn R Programming

mSimCC (version 0.0.3)

bCohort: Aggregate data from several microsimulated cohorts

Description

This function aggregates data from several microsimulated cohorts.

Usage

bCohort(ind)

Value

Data frame with health states as columns and ages as rows.

Arguments

ind

microsimulated cohort obtained using microsim.

Author

David Moriña (Universitat de Barcelona), Pedro Puig (Universitat Autònoma de Barcelona) and Mireia Diaz (Institut Català d'Oncologia)

References

Georgalis L, de Sanjosé S, Esnaola M, Bosch F X, Diaz M. Present and future of cervical cancer prevention in Spain: a cost-effectiveness analysis. European Journal of Cancer Prevention 2016;25(5):430-439.

Moriña D, de Sanjosé S, Diaz M. Impact of model calibration on cost-effectiveness analysis of cervical cancer prevention 2017;7.

See Also

mSimCC-package, microsim, costs, le, plotCIN1Incidence, plotCIN2Incidence, plotCIN3Incidence, plotIncidence, plotMortality, plotPrevalence, qalys, yls

Examples

Run this code
data(probs)
nsim       <- 3
p.men      <- 0
size       <- 20
min.age    <- 10
max.age    <- 84

#### Natural history
hn <- microsim(seed=1234, nsim, probs, abs_states=c(10, 11), sympt_states=c(5, 6, 7, 8), 
               prob_sympt=c(0.11, 0.23, 0.66, 0.9), 
                size, p.men, min.age, max.age, 
                utilityCoefs = c(1, 1, 0.987, 0.87, 0.87, 0.76, 0.67, 0.67, 0.67, 0.938, 0, 0),
                costCoefs.md = c(0, 0, 254.1, 1495.9, 1495.9, 5546.8, 12426.4, 23123.4, 
                                 34016.6, 0, 0, 0),
                costCoefs.nmd = c(0, 0, 81.4, 194.1, 194.1, 219.1, 219.1, 219.1, 219.1, 0, 0, 0),
                costCoefs.i = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), disc=3, 
                treatProbs=c(0,0,1,1,1,0.9894,0.9422,0.8262,0.5507,0,0,0),
                nCores=1) ### individual level

hn_c     <- bCohort(hn) ### Aggregated level

Run the code above in your browser using DataLab